A Level Set Algorithm for Tracking Discontinuities in Hyperbolic Conservation Laws I: Scalar Equations
نویسنده
چکیده
A level set algorithm for tracking discontinuities in hyperbolic conservation laws is presented. The algorithm uses a simple finite difference approach, analogous to the method of lines scheme presented in [20]. The zero of a level set function is used to specify the location of the discontinuity. Since a level set function is used to describe the front location, no extra data structures are needed to keep track of the location of the discontinuity. Also, two solution states are used at all computational nodes, one corresponding to the “real” state, and one corresponding to a “ghost node” state, analogous to the “Ghost Fluid Method” of [6]. High order pointwise convergence is demonstrated for linear and nonlinear conservation laws, even at discontinuities and in multiple dimensions. The solutions are compared to standard high order shock capturing schemes. This paper focuses on scalar conservation laws. Level set tracking for systems of conservation laws in multi-dimensions will be presented in future work [2]. ∗Los Alamos National Laboratory, Los Alamos, NM 87545 performed under the auspices of the U.S. Department of Energy
منابع مشابه
A total variation diminishing high resolution scheme for nonlinear conservation laws
In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...
متن کاملThe comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملConservative front tracking and level set algorithms.
Hyperbolic conservation laws are foundational for many branches of continuum physics. Discontinuities in the solutions of these partial differential equations are widely recognized as a primary difficulty for numerical simulation, especially for thermal and shear discontinuities and fluid-fluid internal boundaries. We propose numerical algorithms that will (i) track these discontinuities as sha...
متن کاملAn Unconditionally Stable Method for the Euler Equations
We discuss how to combine a front tracking method with dimensional splitting to solve numerically systems of conservation laws in two space dimensions. In addition we present an adaptive grid reenement strategy. The method is unconditionally stable and allows for moderately high cfl numbers (typically 1{4), and thus it is highly eecient. The method is applied to the Euler equations of gas dynam...
متن کاملTracking discontinuities in hyperbolic conservation laws with spectral accuracy
It is well known that the spectral solutions of conservation laws have the attractive distinguishing property of infiniteorder convergence (also called spectral accuracy) when they are smooth (e.g., [C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods for Fluid Dynamics, Springer-Verlag, Heidelberg, 1988; J.P. Boyd, Chebyshev and Fourier Spectral Methods, second ed., Dover, New...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998